121 research outputs found

    B-lymphocytes from Malignant Hyperthermia-susceptible Patients Have an Increased Sensitivity to Skeletal Muscle Ryanodine Receptor Activators

    Get PDF
    Malignant hyperthermia (MH) is a pharmacogenetic disease triggered by volatile anesthetics and succinylcholine in genetically predisposed individuals. The underlying feature of MH is a hypersensitivity of the calcium release machinery of the sarcoplasmic reticulum, and in many cases this is a result of point mutations in the skeletal muscle ryanodine receptor calcium release channel (RYR1). RYR1 is mainly expressed in skeletal muscle, but a recent report demonstrated the existence of this isoform in human B-lymphocytes. As B-cells can produce a number of cytokines, including endogenous pyrogens, we investigated whether some of the symptoms seen during MH could be related to the involvement of the immune system. Our results show that (i) Epstein-Barr virus-immortalized B-cells from MH-susceptible individuals carrying the V2168M RYR1 gene mutation were more sensitive to the RYR activator 4-chloro-m-cresol and (ii) their peripheral blood leukocytes produce more interleukin (IL)-1beta after treatment with the RYR activators caffeine and 4-chloro-m-cresol, compared with cells from healthy controls. Our result demonstrate that RYR1-mediated calcium signaling is involved in release of IL-1beta from B-lymphocytes and suggest that some of the symptoms seen during an MH episode may be due to IL-1beta production

    Physiological Role(S) of RyR1 in Smooth Muscle Cells

    Get PDF

    Functional characterization of orbicularis oculi and extraocular muscles

    Get PDF
    The orbicularis oculi are the sphincter muscles of the eyelids and are involved in modulating facial expression. They differ from both limb and extraocular muscles (EOMs) in their histology and biochemistry. Weakness of the orbicularis oculi muscles is a feature of neuromuscular disorders affecting the neuromuscular junction, and weakness of facial muscles and ptosis have also been described in patients with mutations in the ryanodine receptor gene. Here, we investigate human orbicularis oculi muscles and find that they are functionally more similar to quadriceps than to EOMs in terms of excitation-contraction coupling components. In particular, they do not express the cardiac isoform of the dihydropyridine receptor, which we find to be highly expressed in EOMs where it is likely responsible for the large depolarization-induced calcium influx. We further show that human orbicularis oculi and EOMs express high levels of utrophin and low levels of dystrophin, whereas quadriceps express dystrophin and low levels of utrophin. The results of this study highlight the notion that myotubes obtained by explanting satellite cells from different muscles are not functionally identical and retain the physiological characteristics of their muscle of origin. Furthermore, our results indicate that sparing of facial and EOMs in patients with Duchenne muscular dystrophy is the result of the higher levels of utrophin expression

    Upstream stimulatory factors are involved in the P1 promoter directed transcription of the AbetaH-J-J locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing of the locus AβH-J-J generates functionally distinct proteins: the enzyme aspartyl (asparaginyl) β-hydroxylase (AAH), truncated homologs of AAH with a role in calcium homeostasis humbug and junctate and a structural protein of the sarcoplasmic reticulum membranes junctin. AAH and humbug are over expressed in a broad range of malignant neoplasms. We have previously reported that this locus contains two promoters, P1 and P2. While AAH and humbug are expressed in most tissues under the regulation of the P1 promoter, AAH, junctin and junctate are predominantly expressed in excitable tissues under the control of the P2 promoter. We previously demonstrated that Sp transcription factors positively regulate the P1 promoter.</p> <p>Results</p> <p>In the present study, we extended the functional characterization of the P1 promoter of the AβH-J-J locus. We demonstrated by quantitative Real-time RT-PCR that mRNAs from the P1 promoter are actively transcribed in all the human cell lines analysed. To investigate the transcription mechanism we transiently transfected HeLa cells with sequentially deleted reporter constructs containing different regions of the -661/+81 P1 nucleotide sequence. Our results showed that (i) this promoter fragment is a powerful activator of the reporter gene in HeLa cell line, (ii) the region spanning 512 bp upstream of the transcription start site exhibits maximal level of transcriptional activity, (iii) progressive deletions from -512 gradually reduce reporter expression.</p> <p>The region responsible for maximal transcription contains an E-box site; we characterized the molecular interactions between USF1/2 with this E-box element by electrophoretic mobility shift assay and supershift analysis. In addition, our USF1 and USF2 chromatin immunoprecipitation results demonstrate that these transcription factors bind the P1 promoter <it>in vivo</it>.</p> <p>A functional role of USF1/USF2 in upregulating P1-directed transcription was demonstrated by analysis of the effects of (i) <it>in vitro </it>mutagenesis of the P1/E-box binding site, (ii) RNA interference targeting USF1 transcripts.</p> <p>Conclusion</p> <p>Our results suggest that USF factors positively regulate the core of P1 promoter, and, together with our previously data, we can conclude that both Sp and USF DNA interaction and transcription activity are involved in the P1 promoter dependent expression of AAH and humbug.</p

    Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles

    Get PDF
    We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La3+- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca2+ concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca2+ concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs

    The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism

    Get PDF
    Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO(2peak)), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases

    Quantitative proteomic analysis of skeletal muscles from wild type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies

    Get PDF
    Skeletal muscle is a highly structured and differentiated tissue responsible for voluntary movement and metabolic regulation. Muscles however, are heterogeneous and depending on their location, speed of contraction, fatiguability and function, can be broadly subdivided into fast and slow twitch as well as subspecialized muscles, with each group expressing common as well as specific proteins. Congenital myopathies are a group of non-inflammatory non-dystrophic muscle diseases caused by mutations in a number of genes, leading to a weak muscle phenotype. In most cases specific muscles types are affected, with preferential involvement of fast twitch muscles as well as extraocular and facial muscles. Here we performed relative and absolute quantitative proteomic analysis of EDL, soleus and extraocular muscles from wild type and transgenic mice carrying compound heterozygous mutations in Ryr1 identified in a patient with a severe congenital myopathy. Our quantitative proteomic study shows that recessive Ryr1 mutations not only decrease the content of RyR1 protein in muscle, but also impact the content of many other proteins; in addition, we provide important insight into the pathological mechanism of congenital myopathies linked to mutations in other genes encoding components of the excitation contraction coupling molecular complex

    Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor

    Get PDF
    We have identified a patient affected by a relatively severe form of central core disease (CCD), carrying a heterozygous deletion (amino acids 4863-4869) in the pore-forming region of the sarcoplasmic reticulum calcium release channel. The functional effect of this deletion was investigated (i) in lymphoblastoid cells from the affected patient and her mother, who was also found to harbour the mutation and (ii) in HEK293 cells expressing recombinant mutant channels. Lymphoblastoid cells carrying the RYR1 deletion exhibit an ‘unprompted' calcium release from intracellular stores, resulting in significantly smaller thapsigargin-sensitive intracellular Ca2+ stores, compared with lymphoblastoid cells from control individuals. Blocking the RYR1 with dantrolene restored the intracellular calcium stores to levels similar to those found in control cells. Single channel and [3H]ryanodine binding measurements of heterologously expressed mutant channels revealed a reduced ion conductance and loss of ryanodine binding and regulation by Ca2+. Heterologous expression of recombinant RYR1 peptides and analysis of their membrane topology demonstrate that the deleted amino acids are localized in the lumenal loop connecting membrane-spanning segments M8 and M10. We provide evidence that a deletion in the lumenal loop of RYR1alters channel function and causes CC

    Characterization of recessive RYR1 mutations in core myopathies

    Get PDF
    We have characterized at the molecular level, three families with core myopathies carrying apparent recessive mutations in their RYR1 gene and studied the pharmacological properties of myotubes carrying endogenous mutations as well as the properties of mutant channels expressed in HEK293 cells. The proband of family 1 carried p.Ala1577Thr+p.Gly2060Cys in trans, having inherited a mutation from each parent. Immunoblot analysis of proteins from the patient's skeletal muscle revealed low levels of ryanodine receptor (RyR1) but neither substitution alone or in combination affected the functional properties of RyR1 channels in a discernable way. Two affected siblings in family 2 carried p.Arg109Trp+p.Met485Val substitutions in cis, inherited from the unaffected father. Interestingly, both affected siblings only transcribed the mutated paternal allele in skeletal muscle, whereas the maternal allele was silent. Single-channel measurements showed that recombinant, mutant RyR1 channels carrying both substitutions lost the ability to conduct Ca2+. In this case as well, low levels of RyR1 were present in skeletal muscle extracts. The proband of family 3 carried p.Ser71Tyr+p.Asn2283His substitutions in trans. Recombinant channels with Asn2283His substitution showed an increased activity, whereas recombinant channels with p.Ser71Tyr+p.Asn2283His substitution lost activity upon isolation. Taken together, our data suggest major differences in the ways RYR1 mutations may affect patients with core myopathies, by compromising RyR1 protein expression, stability and/or activit

    Alterations of Excitation–Contraction Coupling and Excitation Coupled Ca2+ Entry in Human Myotubes Carrying CAV3 Mutations Linked to Rippling Muscle Disease

    Get PDF
    Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca2+ homeostasis. In the present study we examined Ca2+ homeostasis and excitation–contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca2+]i and 4-chloro-m-cresol-induced Ca2+ release but reduced KCl-induced Ca2+ influx. Detailed analysis of the voltage-dependence of Ca2+ transients revealed a significant shift of Ca2+ release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation–contraction coupling. Hum Mutat 32:309–317, 2011. © 2011 Wiley-Liss, Inc
    corecore